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Abstract
Mohan et al (1992 Astrophys. Space. Sci. 193 69) (1998 Indian J. Pure Appl.
Math. 29 199) investigated the problem of equilibrium structures and periods
of small adiabatic oscillations of differentially rotating stellar models using
a law of differential rotation of the type ω2 = b0 + b1s

2 + b2s
4 (here ω

is a nondimensional measure of the angular velocity of rotation of a fluid
element at a distance s from the axis of rotation and b′s are suitably chosen
constant parameters). This law of differential rotation assumes cylindrical
symmetry for the rotating fluid elements. In the present paper, we have
extended their study and used a more general law of differential rotation of
the type ω2 = b0 + b1s

2 + b2s
4 + b3z

2 + b4z
4 + b5z

2s2 in which the angular
velocity of rotation of a fluid element is assumed to depend both on its distance
s from the axis of rotation and on its distance z from the plane through the
center of the star perpendicular to the axis of rotation. The main objective of
this study has been to investigate whether the dependence of angular velocity
of rotation on the parameter z in addition to the parameter s substantially alters
the behavior of the eigenfrequencies of small adiabatic barotropic modes of
oscillations of differentially rotating stars or not.

PACS number: 97.10.Kc
Mathematics Subject Classification: 34L99, 34B99, 65N99

1. Introduction

Some of the observed variable stars are also known to be rotating stars (for example FK Comae
Berenices and BY Draconis). Whereas most of the rotating stars are expected to have solid
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body rotations (the angular velocity of rotation of each point of the star is the same), some
of the rotating stars are expected to be rotating differentially. In such type of stars different
parts of the star rotate about the axis of rotation with different angular velocities. Rotation of
a star is expected to produce some effect on the eigenfrequencies of oscillations of a variable
star. However, effects produced by differential rotation are expected to depend upon the law
of differential rotation that is used to appropriately reflect the rotation of the star. It may thus
be of some interest to understand the effects of different types of differential rotations on the
eigenfrequencies of small oscillations of stars.

The mathematical problem of determining the eigenfrequencies of oscillations of a rotating
star is quite complex. Approximate methods have, therefore, been often used in the literature
to study such problems. Most of the authors such as Clement (1965), Kochar and Trehan
(1974), Saio (1981), Mohan and Saxena (1985), Lee and Saio (1987), Chandrasekhar and
Ferrari (1991), Soofi et al (1998), Dintrans and Rieutord (2000), Reese et al (2006) and
Lovekin and Deupree (2008) have studied the oscillations of stars assuming the star to have
solid body rotation and therefore, rotating uniformly. However, some authors such as Clement
(1967), Ireland (1967), Vorontsov (1983), Woodard (1989), Dziembowski and Goode (1992),
Urpin et al (1996), Mohan et al (1998), Karino and Eriguchi (2003) and Lovekin et al (2009)
addressed themselves to the problems of differentially rotating stars also.

Mohan et al (1992, 1998) studied the problems of the equilibrium structures and
eigenfrequencies of small adiabatic barotropic modes of oscillations of polytropic models
of stars assuming a law of differential rotation of the type

ω2 = b0 + b1s
2 + b2s

4 (1)

where the square of the angular velocity of rotation (ω) of a fluid element is assumed to depend
upon the distance s of the fluid element from the axis of rotation.

In another study, Mohan et al (1994) (hereafter, referred as paper 1) extended this law of
differential rotation to a more generalized type of law of differential rotation of the form

ω2 = b0 + b1s
2 + b2s

4 + b3z
2 + b4z

4 + b5z
2s2 (2)

in order to study the effects of more generalized laws of differential rotation on the equilibrium
structures of differentially rotating polytropic models of stars. In this law of differential
rotation, angular velocity of rotation (ω) depends not only upon the distance s of a fluid
element from the axis of rotation but also on the distance z of this element from the equatorial
plane. This law generates more general types of angular velocities of rotation of fluid elements
inside the star. (In fact whereas law (1) is a Taylor series expansion of ω2 = f (s2), law (2) is
a Taylor series expansion of ω2 = f (s2, z2) up to second-order terms.)

In the case of a gaseous sphere undergoing periodic oscillations, two types of modes of
oscillations are expected to be generated. One of these is called radial modes of oscillations
(in which the fluid elements oscillate in the radial direction only) and the other nonradial
modes (in which fluid elements oscillate in arbitrary directions). These nonradial modes are
further classified into pressure p-modes (also called acoustic waves, here the restoring force
is pressure) and gravitational g-modes (also called gravity waves, here the restoring force is
gravity). It is expected that in the case of rotating stars (in which angular velocity of rotation
is not too large) these types of modes are still excited but their eigenvalues get influenced by
rotation effects.

While studying the eigenfrequencies of pseudo-radial and nonradial modes of oscillations
of rotating polytropic models of stars, Mohan et al (1998) observed that the rotation causes
eigenfrequencies of oscillations of g- modes to decrease. This conclusion is contrary to
the conclusion of certain other authors who using certain other techniques have concluded
that rotation increases the values of eigenfrequencies of oscillations of g-modes (cf Clement
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(1984)). It is possible that this discrepancy in the eigenfrequencies of g-modes of nonradial
oscillations might be due to neglect of the parameter z in the angular velocity of rotation
which had not been considered by the authors in their law of differential rotation (1). It was,
therefore, felt that it would be of some interest to analyze the effect of the parameter z in the
angular velocity of rotation on the periods of small adiabatic barotropic modes of oscillations
of differentially rotating stars.

Keeping this in mind, in the present paper we have computed the eigenfrequencies of
pseudo-radial and nonradial modes of oscillations of polytropic models of stars rotating
differentially according to law (2) where in addition to the parameter s, the effect of the
parameter z is also taken into account in the expression for angular velocity of rotation.

The paper is organized as follows: in section 2 an eigenvalue boundary problem
determining the eigenfrequencies of small adiabatic pseudo-radial modes of oscillations of
a differentially rotating polytropic model of a star has been formulated using the law of
differential rotation (2). An eigenvalue boundary problem which can be used to compute the
eigenfrequencies of small adiabatic nonradial modes of oscillations of differentially rotating
polytropic models of stars has next been obtained in section 3. Numerical computations
have then been performed in section 4 to determine the eigenfrequencies of pseudo-radial and
nonradial modes of oscillations of certain differentially rotating polytropic models of stars of
polytropic indices 1.5 and 3.0 assuming different types of differential rotations obtained by
assigning different values to the parameters b′s in (2). The eigenfrequencies thus computed
have been compared with the earlier results obtained by Mohan et al (1998) (hereafter, referred
as paper II) who did not consider the dependence of differential rotation on the parameter z,
as well as original nonrotating models. Numerical results obtained have then been analyzed
in section 5 and conclusions have been drawn.

2. Eigenfrequencies of small adiabatic pseudo-radial modes of oscillations of
differentially rotating polytropic models

Following Mohan et al (1998), an eigenvalue problem determining the eigenfrequencies of
small adiabatic pseudo-radial modes of oscillations of a differentially rotating polytropic model
of a star rotating differentially according to the law (2) may be expressed as

H1
d2ς

dr2
0

+ H2
dς

dr0
+ (H3ω

∗2 − H4)ς = 0. (3)

Here ω∗2 = R3r3
osσ

2

GM0
and the expressions for rest of the symbols H1,H2,H3,H4 are given

in appendix B, whereas ω∗2 is the nondimensional form of the actual eigenfrequency of
oscillation σ and ς denotes a suitable average of the relative amplitudes of pulsation of the
fluid elements on the equipotential surface ψ = constant. Also r0s is the value of r0 at the
surface of the model, G the universal gravitational constant, M0 the total mass of the star and
R the radius of undistorted polytropic model (necessary details of equation (3) are given in
appendix A for readers’ reference).

Equation (3) determines the eigenfrequencies of small adiabatic pseudo-radial modes of
oscillations of differentially rotating polytropic models of stars rotating differentially according
to law (2) which takes into account the dependence on the parameter z besides the parameter
s. This equation is of Sturm–Liouville type and has to be solved subject to the boundary
conditions which require ς to be finite at points corresponding to the center (r0 = 0) and the
free surface (r0 = r0s).
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3. Eigenfrequencies of small adiabatic nonradial modes of oscillations of differentially
rotating polytropic models

Following Mohan et al (1998) again, the system of differential equations governing the
nonradial modes of oscillations of differentially rotating polytropic models of stars which are
rotating differentially according to law (2) may be expressed as

dζ

dx
+ B1ζ +

(
B2 +

B3

ω∗2

)
η +

1

ω∗2
B3φ = 0

dη

dx
+ (E1ω

∗2 + E2)ζ + E3η + E4φ +
dφ

dx
= 0

d2φ

dx2
+ F1

dφ

dx
+ F2ζ + F3η + F4φ = 0

(4)

where ω∗2 is the same as defined in (3) and the detailed expressions for the parameters
B1, B2, E1, E2, etc obtained in series form for polytropic models are given in appendix B
(necessary details of equation (4) are given in appendix A for readers’ reference).

The eigenvalue problem (4) determines the eigenfrequencies of nonradial modes of
oscillations of a differentially rotating polytropic model of a star rotating differentially
according to law (2). It has to be solved subject to the boundary conditions.

At the center x = 0

η + φ = 2ω2

3lr4
0s

(
ρ

ρc

)
ζ,

dφ

dx
= 0 (5)

and at the surface x = 1

η r3
0s

[
1 + 2b0 r3

0s +

(
16b1

15
+

8b3

15

)
r5

0s +
24b2

0

5
r6

0s +

(
16b2

21
+

2b4

3
+

8b5

21

)
r7

0s

+

(
44b0b1

7
+

44b0b3

21

)
r8

0s +

(
1664b0b2

315
+

104b0b4

35
+

208b0b5

105
+

104b1b3

105

+
208b2

1

105
+

52b2
3

35

)
r10

0s +

(
2240b1b2

693
+

203b1b4

150
+

224b1b5

231
+

448b2b3

693

+
4b3b4

3
+

22 072b3b5

3465

)
r12

0s + · · ·
]

+
2

ξ 2
u

dθψ

dx
ζ = 0 (6a)

and

dθψ

dx
+ φ

{
l + (l + 1)

[
1 + b0r

3
0s +

(
2b1

3
+

b3

3

)
r5

0s +
11b2

0

5
r6

0s +

(
8b2

15
+

7b4

15
+

4b5

15

)
r7

0s

+

(
368b0b1

105
+

104b0b3

105

)
r8

0s +

(
208b0b2

63
+

34b0b4

21
+

8b0b5

7

+
52b1b3

105
+

44b2
1

35
+

113b2
3

105

)
r10

0s +

(
38 464b1b2

17325
+

56b1b4

75
+

3424b1b5

5775

+
4208b2b3

17325
+

68b3b4

75
+

944b3b5

1925

)
r12

0s + · · ·
]}

= 0. (6b)

In the above expressions, terms up to second order of smallness in b0, b1, b2, b3, b4, b5 and
up to order r12

0s in r0s have been retained. Other parameters used in equations (4)–(6) have the
same meanings as assigned to them elsewhere in this paper.
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        Effect of  z  not considered   Effect of  z  considered
Model 5  

      ( 0 1 20.1, 0.1, 0.0b b b= = = )      ( 0 1 2 3 4 50.1, 0.1, 0.0, 0.1, 0.1, 0.0b b b b b b= = = = = = ) 

 

 Model 8 
     ( 0 1 20.1, 0.1, 0.05b b b= = − = )        ( 0 1 2 3 4 50.1, 0.1, 0.05, 0.1, 0.1, 0.0b b b b b b= = − = = = = ) 

 

Model 11 (a) 
   ( 0 1 20.1, 0.02, 0.05b b b= = = − )     ( 0 1 2 3 4 50.1, 0.02, 0.05, 0.1, 0.1, 0.0b b b b b b= = = − = = = ) 

 
Model 11 (b)  

             ( 0 1 20.1, 0.02, 0.05b b b= = = − )     ( 0 1 2 3 4 50.1, 0.02, 0.05, 0.1, 0.0, 0.1b b b b b b= = = − = = = ) 

 

 

 

Figure 1. Variation of angular velocity ω2 (in radians) with angle θ (in degrees).

On setting b3 = 0, b4 = 0, b5 = 0 in (4–6), we get the same expressions as obtained
earlier by Mohan et al (1998) (equation (8–12) of paper II) in which the dependence of angular
velocity of rotation on the parameter z had not been considered.

The system of differential equations (4) along with the boundary conditions (5)–(6) may
be used to compute the eigenfrequencies of nonradial modes of oscillations of differentially
rotating polytropic models of stars rotating according to generalized law of differential
rotation (2).
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             ( 0 1 20.1, 0.02, 0.05b b b= = = − )    ( 0 1 2 3 4 50.1, 0.02, 0.05, 0.1, 0.1, 0.1b b b b b b= = = − = = = ) 

 
 

 
Model 11(d) 
             ( 0 1 20.1, 0.02, 0.05b b b= = = − )    ( 0 1 2 3 4 50.1, 0.02, 0.05, 0.0, 0.1, 0.1b b b b b b= = = − = = = ) 

 

Model 11 (c) 

Figure 1. (Continued.)

4. Numerical evaluation of the eigenfrequencies

Eigenvalue problems developed in sections 2 and 3 have been solved numerically to compute
eigenvalues of pseudo-radial and nonradial modes of oscillations of certain differentially
rotating polytropic models. The eigenvalue problem of section 2 is of the Sturm–Liouville type.
In order to compute the eigenfrequencies of small adiabatic pseudo-radial modes of oscillations
of differentially rotating polytropic models, equation (3) has been integrated numerically
subject to the boundary conditions which require ς to be finite at points corresponding to
the center and the free surface of the model. The values of θψ and dθψ/(dx) needed for
the purpose at various points were taken from the numerical solution of equation (19a) of
paper I. Computations were started with some trial value of ω2. For this chosen value of ω2

a series solution was first developed at a point close to the center (x = 0.005). This solution
is then used to carry the integration of the pulsation equation (3) outward using the fourth-
order Runge–Kutta method. Using the same numerical value of ω2, the series solution is also
developed at points near the surface which is then used to carry the integration of equation (3)
inward. The value of ς/(dς/dx) obtained from the outward and inward integrations of (3) is
then matched at some preselected point in the interior of the model. The process is continued
iteratively with different choices of the value of ω2, till a value of ω2 is found for which the
two solutions agree to specified accuracy.

In order to start integrations from points near the center and the surface, series
solutions were developed at x = 0.01 and x = 0.99. Outward and inward integrations
were performed using a step length of x = 0.01. Trials with different values of ω2 were
continued till the absolute difference in the value of ς/(dς/dx) at the preselected point in
the interior of the model from the outward and inward integrations was found to be less than
0.0005.
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1. Radial Oscillations 
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2. Nonradial Oscillations 
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Figure 2. Comparison of the present values of the eigenfrequencies with the values of Mohan
et al (1998) for polytropes of indices 3.0.

(This figure is in colour only in the electronic version)

Computations have been performed to compute the eigenfrequencies of the fundamental
and the first mode of pseudo-radial modes of oscillations of differentially rotating polytropic
models with polytropic indices 1.5 and 3.0 for different choices of rotation parameters b′s of
law of differential rotation (2). (These values of b′s are listed in table 1.) The equilibrium
structures of the differentially rotating polytropic models corresponding to these choices of
the values of b′s have been earlier obtained in paper I. The obtained eigenfrequencies are
presented in table 2. For comparison we also present in this table the corresponding results
of Mohan et al (1998) who did not consider the effects of the parameter z in their law of
differential rotation as well as corresponding nonrotating models.

Eigenfrequencies of the nonradial modes of oscillations have also been computed
numerically using the eigenvalue problem of section 3. For this purpose the Chebyshev
polynomial expansion technique used earlier by Mohan et al (1998) has been used. (The
essential details of the method are given in Saxena (1984).) The boundary condition (6a) was
used as the discriminant condition and ζ = 1 at the center was used as the normalization
condition. The values of θψ and (dθψ/dx) needed at various points in the interior of the model
were taken from the solutions of the structure equation of these models obtained earlier in
paper I. For polytropic models of indices 1.5 and 3.0 we normally used 10 and 15 collocation
points, respectively. However, for determining the eigenfrequencies of certain higher modes

7
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Table 1. Behavior of angular velocity in certain differentially rotating models.

Values of various Behavior of square of
parameters in the law angular velocity of rotation ω2

of differential rotation from center toward surface

In equatorial plane Along axial direction
Model no b0 b1 b2 b3 b4 b5 (z = 0, 0 � s � 1) ω2 = b0 + b1s

2 + b2s
4 (s = 0, 0 � z � 1) ω2 = b0 + b3z

2 + b4z
4

1 0.0 0.0 0.0 0.0 0.0 0.0 No angular velocity No angular velocity

2 0.0 0.0 0.0 0.1 0.1 0.0 No change Increases from 0.0 at the
center to 0.2 at the surface

3 0.0 0.0 0.0 0.1 0.0 0.1 No change Increases from 0.0 at the
center to 0.1 at the surface

4 0.0 0.0 0.0 0.1 0.1 0.1 No change Increases from 0.0 at the
center to 0.2 at the surface

5 0.1 0.1 0.0 0.1 0.1 0.0 Increases from 0.1 at the Increases from 0.1 at the
center to 0.2 at the surface center to 0.3 at the surface

6 0.1 0.1 0.0 0.1 0.0 0.1 Increases from 0.1 at the center Increases from 0.1 at the center
to 0.2 at the surface to 0.2 at the surface

7 0.1 0.1 0.0 0.1 0.1 0.1 Increases from 0.1 at the center Increases from 0.1 at the center
to 0.2 at the surface to 0.3 at the surface

8



J.Phys.A
:M

ath.T
heor.42

(2009)
485212

A
K

L
aletal

Table 1. (Continued.)

Values of various Behavior of square of
parameters in the law angular velocity of rotation ω2

of differential rotation from center toward surface

In equatorial plane Along axial direction
Model no b0 b1 b2 b3 b4 b5 (z = 0, 0 � s � 1) ω2 = b0 + b1s

2 + b2s
4 (s = 0, 0 � z � 1) ω2 = b0 + b3z

2 + b4z
4

8 0.1 −0.1 0.05 0.1 0.1 0.0 Decreases from 0.1 at the center Increases from 0.1 at the center
to 0.05 at the surface to 0.3 at the surface

9 0.1 −0.1 0.05 0.1 0.0 0.1 Decreases from 0.1 at the center Increases from 0.1 at the center
to 0.05 at the surface to 0.2 at the surface

10 0.1 −0.1 0.05 0.1 0.1 0.1 Decreases from 0.1 at the center Increases from 0.1 at the center
to 0.05 at the surface to 0.3 at the surface

11 0.1 0.02 −0.05 0.1 0.1 0.0 Increases from 0.1 at the center Increases from 0.1 at the center
to 0.102 at s = 0.45 and then to 0.3 at the surface
decreases to 0.07 at the surface

12 0.1 0.02 −0.05 0.1 0.0 0.1 Increases from 0.1 at the center Increases from 0.1 at the center
to 0.102 at s = 0.45 and then to 0.2 at the surface
decreases to 0.07 at the surface

13 0.1 0.02 −0.05 0.1 0.1 0.1 Increases from 0.1 at the center Increases from 0.1 at the center
to 0.102 at s = 0.45 and then to 0.3 at the surface
decreases to 0.07 at the surface

Model 1 is an undistorted model.
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Table 2. Eigenfrequencies ω∗2 = r3
osR

3σ 2/(GM0) for the fundamental mode ω∗
0

2 and the first
mode ω∗

1
2 of pseudo-radial modes of oscillations of differentially rotating polytropic models of

stars.

N = 1.5 N = 3.0

Model no ω∗
0

2 ω∗
1

2 ω∗
0

2 ω∗
1

2

1 2.7059 (2.7059) 12.5338 (12.5338) 9.2550 (9.2550) 16.9885 (16.9885)
2 2.9320 (2.7059) 10.2591 (12.5338) 10.2455 (9.2550) 15.5011 (16.9885)
3 2.6206 (2.7059) 12.0455 (12.5338) 8.9724 (9.2550) 16.3226 (16.9885)
4 2.8512 (2.7059) 10.2463 (12.5338) 9.9394 (9.2550) 15.2718 (16.9885)
5 2.4594 (2.4046) 7.7887 (10.2210) 8.1257 (8.2244) 11.0217 (14.0875)
6 2.3271 (2.4046) 9.7016 (10.2210) 7.9218 (8.2244) 13.2873 (14.0875)
7 2.4048 (2.4046) 7.6674 (10.2210) 7.8819 (8.2244) 10.7504 (14.0875)
8 2.6755 (2.5438) 9.5215 (11.5492) 9.3130 (8.7137) 13.9663 (15.7109)
9 2.4664 (2.5438) 11.0509 (11.5492) 8.4411 (8.7137) 15.0356 (15.7109)

10 2.6152 (2.5438) 9.3915 (11.5492) 9.0681 (8.7137) 13.6958 (15.7109)
11 2.5972 (2.4906) 9.1197 (11.1341) 8.9885 (8.5301) 13.2991 (15.1941)
12 2.4134 (2.4906) 10.6355 (11.1341) 8.2494 (8.5301) 14.5091 (15.1941)
13 2.5400 (2.4906) 9.0024 (11.1341) 8.7486 (8.5301) 13.0251 (15.1941)

Results shown in parenthesis correspond to the values of eigenfrequencies earlier computed by Mohan
et al (1998) assuming a differential rotation law of type (1) in which the parameter z had not been taken
into account.

of nonradial oscillations, the number of collocation points was further increased to achieve
the desired accuracy of 0.0001 in getting the discriminant condition satisfied. The number of
collocation points used in determining a specific mode of nonradial oscillation of a distorted
polytropic model was, however, kept the same as used in determining the corresponding mode
for the corresponding undistorted model.

The results for the nonradial modes of oscillations of certain differentially rotating
polytropic models of indices 1.5 and 3.0 are presented in tables 3 and 4 respectively.
The corresponding results when the dependence of angular velocity of rotation on the
parameter z was not considered (Mohan et al 1998) are also presented in these tables for
comparison.

The variations in the angular velocities ω2 (for different values of b′s as given in table 1)
with angle θ (the angle which the point P (x, y, z) makes with the positive x-axis at the center
of the differentially rotating star, here r is taken to be 1) are shown in figure 1 for some of the
considered models. The effect of considering the parameter z in the law of differential rotation
on the eigenfrequencies of pseudo-radial and nonradial modes is also depicted graphically in
figure 2.

5. Analysis of the numerical results and conclusions

In this paper, we have computed the eigenfrequencies of various differentially rotating
polytropic models of stars in which the angular velocity of rotation depends on two parameters
s and z by assuming a general law of differential rotation of type (2). The eigenfrequencies
of these differentially rotating polytropic models of indices 1.5 and 3.0 have been compared
with the corresponding eigenfrequencies of an undistorted polytropic model (model 1) as
well as differentially rotating models developed by Mohan et al (1998) using a law of

10
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differential rotation of type (1) so as to determine the effect of inclusion of the parameter
z (distance of a fluid element from the equatorial plane) in the law of differential rotation
on the eigenfrequencies of pseudo-radial and nonradial modes of oscillation of differentially
rotating polytropic models of stars. (Polytropic models of indices 3.0 and 1.5 are generally
considered to be reasonably good approximations of inner structures of massive and less
massive stars on and near the main sequence.)

Our results in table 2 show that in the case of differentially rotating stars whose angular
velocity of rotation ω depends on both the parameters z and s, the eigenfrequencies of
pseudo-radial modes of oscillations of various differentially rotating polytropic models of
stars considered by us decrease in comparison to the eigenfrequencies of an undistorted
polytropic model. This conclusion is similar to the earlier conclusions of Mohan
et al (1998) who only considered the dependence of differential rotation on the
parameter s.

Results presented in tables 3 and 4 show that differential rotation, in general, decreases the
values of eigenfrequencies of f - and p-modes of nonradial oscillations of polytropic models
of indices 1.5 and 3.0 considered by us as compared to the corresponding values of undistorted
polytropic models. This behavior is similar to the behavior reported earlier by Mohan
et al (1998) in the case of differentially rotating stars whose angular velocity depends on
the parameter s alone.

Results of table 4 also show that when the angular velocity of rotation depends more
on the parameter z then there is an increase in the values of eigenfrequencies of g-modes
of nonradial oscillations of differentially rotating polytropic models of stars as compared
to the corresponding values of an undistorted polytropic model whereas there is a decrease
in the values when the dependence of angular velocity of rotation on the parameter z is
less.

Our results in table 4 thus show that with the inclusion of the parameter z in the
law of differential rotation, the eigenfrequencies of g-modes of nonradial oscillations of
differentially rotating polytropic models, in general, are greater than the corresponding
values of an undistorted model. These results are contrary to the results earlier reported by
Mohan et al (1998). However, these results are in accordance with the results of authors
such as Clement (1984) who have reported that on account of rotation there is, in general, an
increase in the values of g-modes of nonradial oscillations of stars.

On comparing our results in tables 2–4 with the corresponding results obtained earlier by
Mohan et al (1998), we found that, in general, with the inclusion of the parameter z in the law
of differential rotation the eigenfrequencies of fundamental and first modes of pseudo-radial
oscillations and f - and p-modes of nonradial oscillations decrease. However, for polytropic
models of index 3.0 with the inclusion of the parameter z, the eigenfrequencies of f -modes
increase in certain models and decrease in others. Table 4 also shows that, in general, there
is an increase in the values of eigenfrequencies of g-modes of nonradial oscillations with
the inclusion of the parameter z as compared to the corresponding values earlier obtained by
Mohan et al (1998). Some of the results of tables 3 and 4 for polytropes of index 3.0 have
also been depicted in figure 2.

Our present study has thus shown that, in general, with the dependence of angular
velocity of rotation on the parameter z in addition to the parameter s, the eigenfrequencies
of pseudo-radial and nonradial modes (f - and p-modes) of oscillations of differentially
rotating polytropic models of indices 1.5 and 3.0, in general, decrease on account of
rotation whereas eigenfrequencies of g-modes of nonradial oscillations increase on account of
rotation.
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Table 3. Eigenfrequencies ω∗2 = r3
osR

3σ 2/(GM0) of nonradial modes of oscillations of differentially rotating polytropic models (N = 1.5).

Model no f p1 p2 p3

1 2.4225 (0–0) (2.4225) 10.2911 (1–1) (10.2911) 23.5163 (2–2) (23.5163) 41.2956 (3–3) (41.2956)
2 2.0617 (2.4225) 7.1194 (10.2911) 14.9219 (4–2) (23.5163) 22.9184 (5–3) (41.2956)
3 2.2985 (2.4225) 9.7687 (10.2911) 22.3301 (23.5163) 38.5240 (41.2956)
4 2.0116 (2.4225) 7.0795 (10.2911) 14.7299 (4–2) (23.5163) 23.4966 (5–3) (41.2956)
5 1.6761 (1.9946) 5.9426 (8.2984) 12.8248 (18.9733) 39.3759 (5–3) (33.7827)
6 1.8972 (1.9946) 7.9130 (8.2984) 18.0511 (18.9733) 31.2721 (33.7827)
7 1.6447 (1.9946) 5.9233 (8.2984) 12.7422 (18.9733) 40.1572 (5–3) (33.7827)
8 1.8903 (2.2087) 6.8698 (9.4254) 14.3954 (4–2) (21.5167) 22.4400 (5–3) (36.6377)
9 2.0932 (2.2087) 8.9450 (9.4254) 20.3759 (21.5167) 34.2721 (36.6377)

10 1.8403 (2.2087) 6.7934 (9.4254) 14.3828 (4–2) (21.5167) 23.5307 (36.6377)
11 1.8402 (2.1504) 6.6370 (9.0807) 14.5736 (20.8506) 29.1000 (37.9741)
12 2.0376 (2.1504) 8.6195 (9.0807) 19.8009 (20.8506) 35.4345 (37.9741)
13 1.7937 (2.1504) 6.5658 (9.0807) 14.3525 (20.8506) 27.2000 (37.9741)

Numbers shown in parentheses are the number of nodes appearing in the eigenfunctions ζ and η. The case of the entries where no such nodes are shown indicates
that these eigenfrequencies have the same number of nodes in ζ and η as are shown in the undistorted case (model 1).
Results shown in parenthesis correspond to the values of eigenfrequencies computed by Mohan et al (1998) assuming a differential rotation law of type (1) in which
the parameter z had not been taken into account.
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Table 4. Eigenfrequencies ω∗2 of nonradial modes of oscillations of differentially rotating polytropic models (N = 3.0).

Model
no g3 g2 g1 f p1 p2 p3

1 1.8358 (3–3) 2.8316 (2–2) 4.9264 (1–1) 8.2461 (0–0) 15.2827 (1–1) 26.7282 (2–2) 41.4744 (3–3)
(1.8358) (2.8316) (4.9264) (8.2461) (15.2827) (26.7282) (41.4744)

2 2.1493 (1.8358) 3.3357 (2.8316) 5.7849 (4.9264) 8.8944 (4–0) 12.6491 (9–1) 18.8674 (10–4) 29.1967 (13–5)
(8.2461) (15.2827) (26.7282) (41.4744)

3 1.7998 (1.8358) 2.7729 (2.8316) 4.8183 (4.9264) 7.9820 (8.2461) 14.5364 (15.2827) 25.3335 (4–2) 39.2490 (5–3)
(26.7282) (41.4744)

4 2.0894 (1.8358) 3.2334 (2.8316) 5.6048 (4.9264) 8.6085 (4–0) 12.3222 (9–1) 18.8458 (12–4) 30.5049 (13–5)
(8.2461) (15.2827) (26.7282) (41.4744)

5 2.0199 (1.7759) 3.1083 (2.7314) 5.2986 (4.7080) 7.2543 (8–4) 9.7420 (9–3) 15.3227 (12–4) 29.1590 (7–5)
(7.4062) (12.4936) (21.2997) (32.8334) (5–3)

6 1.7439 (1.7759) 2.6789 (2.7314) 4.6061 (4.7080) 7.1460 (7.4062) 11.8018 (12.4936) 20.0237 (21.2997) 31.4239
(32.8334) (5–3)

7 1.9743 (1.7759) 3.0283 (2.7314) 5.1543 (4.7080) 7.0339 (8–6) 9.5222 (9–5) 15.9147 (10–8) 30.1528 (11–7)
(7.4062) (12.4936) (21.2997) (32.8334) (5–3)

8 2.0472 (1.7908) 3.1656 (2.7570) 5.4628 (4.7800) 8.1745 (4–0) 11.5892 (9–1) 17.7551 (10–6) 28.2581 (13–3)
(7.7952) (14.0400) (24.3741) (4–2) (37.5988) (9–3)
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Table 4. (Continued.)

Model
no g3 g2 g1 f p1 p2 p3

9 1.7597 (1.7908) 2.7069 (2.7570) 4.6820 (4.7800) 7.5457 (7.7952) 13.3163 (14.0400) 23.0027 (6–2) 35.6656 (9–3)
(24.3741) (4–2) (37.5988) (9–3)

10 2.0000 (1.7908) 3.0880 (2.7570) 5.3238 (4.7800) 7.9382 (8–0) 11.4061 (9–1) 17.5552 (12–2) 29.5655 (10–5)
(7.7952) (14.0400) (24.3741) (4–2) (37.5988) (9–3)

11 2.0336 (1.7839) 3.1448 (2.7462) 5.3964 (4.7508) 7.9024 (4–0) 11.0795 (9–1) 17.0187 (10– 2) 27.5080 (13–3)
(7.6549) (13.5410) (23.4990) (4–2) (36.5066) (9–3)

12 1.7517 (1.7839) 2.6953 (2.7462) 4.6510 (4.7508) 7.4005 (7.6549) 12.8206 (13.5410) 22.1169 34.2086 (7–3)
(23.4990) (4–2) (36.5066) (9–3)

13 1.9889 (1.7839) 3.0661 (2.7462) 5.2566 (4.7508) 7.6633 (4–0) 10.7398 (9–1) 16.7665 (10–4) 29.4162 (11–7)
(7.6549) (13.5410) (23.4990) (4–2) (36.5066) (9–3)

Numbers shown in parentheses are the number of nodes appearing in the eigenfunctions ζ and η. The case of the entries where no such nodes are shown indicates
that these eigenfrequencies have the same number of nodes in ζ and η as are shown in the undistorted case (model 1).
Results shown in parenthesis correspond to the values of eigenfrequencies computed by Mohan et al (1998) assuming a differential rotation law of type (1) in which
the parameter z had not been taken into account.
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Appendix A. Eigenvalue boundary problems for computing pseudo-radial and
nonradial modes of oscillations of differentially rotating models

Mohan et al (1991) formulated eigenvalue problems which determine the eigenfrequencies of
small adiabatic pseudo-radial and nonradial modes of oscillations of rotationally and tidally
distorted stellar models. The approach was later used by Mohan et al (1998) to determine
the eigenfrequencies of small adiabatic pseudo-radial and nonradial modes of oscillations of
certain differentially rotating stars. In this section we present in brief the approach adopted
by Mohan et al (1991, 1998) to determine the eigenfrequencies of small adiabatic barotropic
modes of oscillations of differentially rotating and tidally distorted stars.

A.1. Eigenvalue boundary problem determining the eigenfrequencies of small adiabatic
barotropic pseudo-radial modes of oscillations of differentially rotating stars

Assuming that during oscillations the fluid elements on an equipotential surface oscillate in
unison and keeping in view the fact that in hydrostatic equilibrium the equipotential surfaces
are also surfaces of equipressure and equidensity (so that the values of pressure P and density
ρ on the topologically equivalent spherical surfaces of the differentially rotating star are the
actual values of Pψ and ρψ on its corresponding equipotential surfaces), the eigenfrequencies
of small adiabatic pseudo-radial modes of oscillations of a differentially rotating stellar model
can be obtained from its topologically equivalent spherical model developed on the basis of the
averaging technique of Kippenhahn and Thomas (1970). Based on this approach, the equation
determining the eigenfrequencies of pseudo-radial modes of oscillations of a differentially
rotating stellar model is the same as the equation determining eigenfrequencies of radial
modes of oscillations of the corresponding topologically equivalent spherical model and can
be expressed as

d2κ

dr2
0ψ

+
4 − μ

r0ψ

dκ

dr2
0ψ

+

[
ρ0ψ

γ P0ψ

σ 2 −
(

3 − 4

γ

)
μ

r2
0ψ

]
κ = 0 (A.1)

where

μ = − r0ψ

P0ψ

dP0ψ

dr0ψ

.

Here r0ψ, ρ0ψ and P0ψ are the values of rψ, ρψ and Pψ on the equipotential surface ψ =
constant in its equilibrium position, γ is the ratio of specific heats, κ is the relative amplitude
of pulsation of a fluid element distant rψ from the center of the topologically equivalent
spherical model (it is thus some average of the relative amplitudes of pulsation of the fluid
elements on the equipotential surface ψ = constant of the actual distorted model) and σ is
the eigenfrequency of an adiabatic barotropic pseudo-radial mode of small oscillation. The
distance variable rψ of an element of the equivalent spherical model from its center is connected
with the original parameters of the rotationally and tidally distorted model through the relation

rψ(b0, b1, b2, r0) = Rr0

[
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3
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0 +
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0
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51 975
r12

0 + · · ·
]

(A.2)

where r0 = 1
ψ−q

,ψ being the nondimensional form of the total potential at the corresponding
point of the distorted model, R is the undistorted equilibrium radius of the star of mass M0 and
q = M1/M0 is a nondimensional parameter representing the ratio of the mass of the secondary
component over primary component of the binary system (we assume q � 1).
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Using rψ, ρψ and Pψ in place of r0ψ, ρ0ψ and P0ψ to denote the equilibrium values on the
equipotential surfaces and taking r0 in place of rψ , as the independent variable, equation (A.1)
governing the small adiabatic pseudo-radial modes of oscillations of a differentially rotating
star has been expressed by Mohan et al (1998) as

A(b0, b1, b2, r0)
d2κ

dr2
0

+

[
4 − μ

r0
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]
κ = 0 (A.3)

where
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Also,
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Pψ

dPψ

dr0

dr0

drψ

= −F (b0, b1, b2)
r0

Pψ

dPψ

dr0

where

F(b0, b1, b2, r0) = 1 − b0r
3
0 − 2b1

3
r5

0 − 6b2
0

5
r6

0 − 56b2

105
r7

0 − 76b0b1

35
r8

0

−
(

704b0b2

315
+

256b2
1

315

)
r10

0 −
(

26 144b1b2

17 325

)
r12

0 − · · · .
Equation (A.3) forms an eigenvalue boundary problem in the eigenfrequency of oscillation
σ . This eigenvalue problem is of the Sturm–Liouville type having singularities both at the
center and at the surface of the model. It has to be solved numerically subject to the boundary
conditions which require κ to be finite at the center as well as at the free surface.

In reality equation (A.3) determines the periods of small adiabatic pseudo-radial modes
of oscillations of the topologically equivalent spherical model. However, since equipotential
surfaces of the actual rotationally and tidally distorted stellar model are also the surfaces of
equipressure and equidensity, the values of pressure and density on the equipotential surfaces
of the rotationally and tidally distorted stars are the same as on the corresponding equipotential
surfaces of the equivalent spherical model. Hence, the eigenfrequencies of the pseudo-radial
modes of oscillations determined by solving the eigenvalue problem for the topologically
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equivalent spherical model are indeed the eigenfrequencies of the pseudo-radial modes of
oscillation of the undistorted model which has got distorted by the rotational and tidal effects.
However, the values of the eigenfunction κ obtained on solving equation (A.3) are not the
actual values of amplitudes of pulsation κ for the distorted model but rather some average of
the true values of eigenfunction κ at various points on the corresponding equipotential surface
of the rotationally and tidally distorted model.

We may thus use equation (A.3) to determine the effects of differential rotation on the
periods of small adiabatic pseudo-radial modes of oscillations of a stellar model. The effects of
differential rotation have been incorporated through introduction of terms A(b0, b1, b2, r0),
B(b0, b1, b2, r0), C(b0, b1, b2, r0), E(b0, b1, b2, r0) and F (b0, b1, b2, r0) as well as their
influence on the values of ρψandPψon ψ. The present method, in fact, incorporates the effects
of distortional forces both while computing the equilibrium structure (in computing the values
of Pψ, ρψ etc) and in solving (A.3) which determines the eigenfrequencies of oscillations.

The eigenvalue problem (A.3) together with the boundary conditions which require κ to
be finite both at the center and at the free surface of the star can be solved numerically in the
usual manner as is done in the case of undistorted models (for details see Lal (1993)).

A.2. Eigenvalue boundary problem determining the eigenfrequencies of small adiabatic
barotropic nonradial modes of oscillations of differentially rotating stars

Mohan et al (1991) have also formulated the eigenvalued boundary value problem to determine
the eigenfrequencies of nonradial modes of oscillations of rotationally and tidally distorted
stellar models. As in the radial case, the values of the physical parameters ρψand Pψ on
the equipotential surfaces of the distorted model are assumed to be the same as those on the
corresponding equipotential surfaces of the topologically equivalent spherical model. This
topologically equivalent spherical model has then been used to determine the eigenfrequencies
of nonradial modes of oscillations of the differentially rotating stellar models in the usual way.
Mohan et al (1998) have expressed the eigenvalue problem determining the eigenfrequencies
of nonradial modes of oscillations of differentially rotating stellar model in an explicit form as
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(A.4)
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)
(xr0s)

10

+
9664b1b2

4725
(xr0s)

12 + · · ·
]

F3 = −4 π Gρ2
ψ

γ Pψ

(
drψ

dx

)2

= −4 π G r2
0 s R2ρ2

ψ

γ Pψ

[
1 +

8b0

3
(xr0s)

3 +
8b1

5
(xr0s)

5 +
346b2

0

45
(xr0s)

6 +
128b2

105
(xr0s)

7

+
1136b0b1

105
(xr0s)

8 +

(
992b0b2

105
+

5672b2
1

1575

)
(xr0s)

10 +

(
314 432b1b2

51 975

)
(xr0s)

12 + · · ·
]
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F4 = l (l + 1)

x2
− l

x

(
d2rψ

dx2

) / (
drψ

dx

)
+

2 l

x

(
1

rψ

drψ

dx

)
− l (l + 1)

r2
ψ

(
drψ

dx

)2

= − l

x2

{[
4b0 (xr0s)

3 + 4b1 (xr0s)
5 +

67b2
0

5
(xr0s)

6 +
64b2

15
(xr0s)

7 +
964b0b1

35
(xr0s)

8

+

(
10 096b0b2

315
+

3796b2
1

315

)
(xr0s)

10 +
133 2416b1b2

51 975
(xr0s)

12 + · · ·
]

l
[
2b0 (xr0s)

3

+
4b1

3
(xr0s)

5 +
27b2

0

5
(xr0s)

6 +
16b2

15
(xr0s)

7 +
292b0b1

35
(xr0s)

8

+

(
2416b0b2

315
+

932b2
1

315

)
(xr0s)

10 +
284 864b1b2

51 975
(xr0s)

12 + · · ·
]}

.

Again σ is the eigenfrequency of oscillations and x = r0/r0s is the nondimensional form of a
distance of a fluid element from the center of the star. Also

ζ = r2
ψδrψ

R3xl+1
, η = P′

ψ

2π G ρc R2xlρψ

and φ = ψ ′
g

2 π Gρc R2xl
(A.5)

where δrψ being the amplitudes of Lagrangian variations in the radial direction and P ′
ψ,ψ ′

g the
amplitudes of Lagrangian variation in pressure and gravitational potential on the equipotential
surface ψ = constant.

The eigenvalue problem (A.4) determining the eigenfrequencies of nonradial modes of
oscillations of a differentially rotating stellar model is to be solved subject to the boundary
conditions at the center and the free surface. Boundary conditions at the center require
δrψ = 0, P ′

ψ/ρψ = 0 and ψ ′
g = 0 for rψ = 0. These requirements lead us to the analytic

conditions

η + φ = σ 2

2 π Gρc l rOS

ζ,
dφ

dx
= 0 (A.6)

at the center x = 0.
If the pressure Pψ on the free surface is taken to be zero, then δPψ , the Lagrangian

variation in pressure, should be zero at the outer surface. This leads us to the condition

2 π Gρc r2
ψ ρψ

drψ

dx
η + R

dPψ

dx
ζ = 0

or

2 π GρcρψR2r3
0s

[
1 + 4n r3

0s +

(
36

5
q2 +

864

45
n2 +

72

15
nq

)
r6

0s +
55q2

7
r8

0s

+
26q2

3
r10

0s + · · ·
]

η +
dPψ

dx
ζ = 0. (A.7a)

However, the condition requiring the gravitational potential to be continuous across the free
surface gives

dφ

dx
+

[
l +

(l + 1)

rψ

drψ

dx

]
φ +

2 R ρψ

ρcr
2
ψ

drψ

dx
ζ = 0

or
dφ

dx
+ φ

{
l + (l + 1)

[
1 + 2 n r3

0s +

(
24q2

5
+

396n2

45
+

48nq

15

)
r6

0s +
40q2

7
r8

0s

+
20q2

3
r10

0s + · · ·
]}

+
2ρψ

ρc r0 s

[
1 +

4

3
n r3

0 s +

(
4 q2 +

8

3
n q +

56

9
n2

)
r6

0 s

+ 5 q2r8
0s + 6 q2r10

0s + · · ·] ζ = 0 (A.7b)

at the surface x = 1.
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Thus, in terms of the nondimensional eigenfunctions ζ, η and φ, the problem of
determining the eigenfrequencies of nonradial modes of oscillation of differentially rotating
stellar model reduces to solving the system of differential equation (A.4) subject to the
boundary conditions (A.6) at the center and the boundary conditions (A.7) at the free surface.

Appendix B. Explicit expressions for various coefficients of eigenvalue problems (3) and
(4) in the case of differentially rotating polytropic models

In this section we have presented the explicit expressions for the various coefficients H1,H2 etc
and B1, B2, E1 etc used in computing the pseudo-radial and nonradial modes of oscillations
of polytropic models of stars respectively (cf section 2 and section 3).

B.1. Radial oscillations (equation (3))

H1 = 1 − 8b0

3
r3

0 −
(

8b1

5
+

4b3

5

)
r5

0 − 26b2
0

45
r6

0

−
(

128b2

105
+

16b4

15
+

64b5

105

)
r7

0 −
(

16b0b1

7
− 4b0b3

7

)
r8

0

−
(

928b0b2

315
− 68b0b4

315
+

16b0b5

45
+

328b2
1

315
+

122b2
3

63
− 40b1b3

63

)
r10

0

−
(

22 336b1b2

10 395
− 32b1b4

45
− 32b1b5

693
− 6304b2b3

10 395

+
4b3b4

5
+

1376b3b5

3465

)
r12

0 + · · ·

H2 = 1

r0

[
4 − 32b0

3
r3

0 −
(

116b1

15
+

58b3

15

)
r5

0 − 266b2
0

45
r6

0 −
(

736b2

105
+

92b4

15
+

368b5

105

)
r7

0

−
(

160b0b1

9
− 16b0b3

9

)
r8

0 −
(

1504b0b2

63
+

52b0b4

63
+

176b0b5

45

+
904b2

1

105
+

298b2
3

21
− 24b1b3

7

)
r10

0 −
(

40 064b1b2

2079
− 64b1b4

15
+

192b1b5

385

− 42 304b2b3

10 395
+

328b3b4

45
+

12 736b3b5

3465

)
r12

0 + · · ·
]

H3 = (N + 1)ξ 2
u

3γ r3
os

(
ρ

ρc

)
1

θψ

H4 = −
(

3 − 4

γ

)
(N + 1)

r0

(
1

θψ

dθψ

dr0

)[
1 − 5b0

3
r3

0 −
(

14b1

15
+

7b3

15

)
r5

0 − 47b2
0

45
r6

0

−
(

24b2

35
+

3b4

5
+

12b5

35

)
r7

0 −
(

136b0b1

63
+

8b0b3

63

)
r8

0

−
(

16b0b2

7
+

10b0b4

21
+

8b0b5

15
+

268b2
1

315
+

71b2
3

63
− 4b1b3

63

)
r10

0

−
(

2368b1b2

1485
+

32b1b5

165
− 32b2b3

297
+

28b3b4

45
+

32b3b5

99

)
r12

0 + · · ·
]

where ξu is the value of ξ at the outer surface of the undistorted polytropic model (where
ξ is the Lane–Emden variable, specifically we have the value of ξu = 3.653 75, 6.896 85
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corresponding to polytropic index N = 1.5 and 3.0 respectively), ρc the density at the center
and ρ the average density of the undistorted polytropic model, N is the polytropic index of
the model, γ is the ratio of specific heats, θψ is the parameter depending upon the distance of
the chosen point from the center of the star.

Assuming that the angular velocity of differential rotation of the star is not too large, in
the above expressions, terms up to second order of smallness in b0, b1, b2, b3, b4, b5 and up to
order r12

0 in r0 have been only retained.
On setting b3 = 0, b4 = 0, b5 = 0 in the above expressions, we get same expressions

as obtained earlier by Mohan et al (1998) (equation (7) of paper II) in which the differential
rotation was assumed to depend on the parameter s alone.

B.2. Nonradial oscillations (equation (4))

B1 = l + 1

x
+

N + 1

γ

(
1

θψ

dθψ

dx

)

B2 = (N + 1)ξ 2
u x r3

0s

2 γ θψ

[
1 + 2b0(xr0s)

3 +

(
16b1

15
+

8b3

15

)
(xr0s)

5 +
24b2

0

5
(xr0s)

6

+

(
16b2

21
+

2b4

3
+

8b5

21

)
(xr0s)

7 +

(
44b0b1

7
+

44b0b3

21

)
(xr0s)

8

+

(
1664b0b2

315
+

104b0b4

35
+

208b0b5

105
+

104b1b3

105
+

208b2
1

105
+

52b2
3

35

)
(xr0s)

10

+

(
2240b1b2

693
+

203b1b4

150
+

224b1b5

231
+

448b2b3

693

+
4b3b4

3
+

22 072b3b5

3465

)
(xr0s)

12 + · · ·
]

B3 = −3 l (l + 1)r4
0s

2x

(
ρc

ρ

)[
1 +

4b0

3
(xr0s)

3 +

(
4b1

5
+

2b3

5

)
(xr0s)

5 +
133b2

0

45
(xr0s)

6

+

(
64b2

105
+

8b4

15
+

32b5

105

)
(xr0s)

7 +

(
152b0b1

35
+

46b0b3

35

)
(xr0s)

8

+

(
1232b0b2

315
+

638b0b4

315
+

88b0b5

63
+

1012b1b3

1575
+

2332b2
1

1575
+

1903b2
3

1575

)
(xr0s)

10

+

(
131 872b1b2

51 975
+

208b1b4

225
+

12 272b1b5

17 325
+

22 256b2b3

51 975

+
26b3b4

25
+

9776b3b5

17 325

)
(xr0s)

12 + · · ·
]

E1 = − 2

3xr4
0s

(
ρ

ρc

)[
1 +

2b0

3
(xr0s)

3 +

(
8b1

15
+

4b3

15

)
(xr0s)

5 +
14b2

0

9
(xr0s)

6

+

(
16b2

35
+

2b4

5
+

8b5

35

)
(xr0s)

7 +

(
124b0b1

45
+

32b0b3

45

)
(xr0s)

8
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+

(
96b0b2

35
+

44b0b4

35
+

32b0b5

35
+

64b1b3

175
+

184b2
1

175
+

166b2
3

175

)
(xr0s)

10

+

(
9664b1b2

4725
+

52b1b4

75
+

96b1b5

175
+

1472b2b3

4725

+
188b3b4

225
+

712b3b5

1575

)
(xr0s)

12 + · · ·
]

E2 = 2

ξ 2
u

(
N − N + 1

γ

)
1

θψ

(
dθψ

dx

)2 1

xr3
0s

[
1 − 2b0 (xr0s)

3 −
(

16b1

15
+

8b3

15

)
(xr0s)

5

− 4b2
0

5
(xr0s)

6 −
(

16b2

21
+

2b4

3
+

8b5

21

)
(xr0s)

7 −
(

212b0b1

105
− 4b0b3

105

)
(xr0s)

8

−
(

704b0b2

315
+

32b0b4

105
+

16b0b5

35
− 232b1b3

1575
+

1328b2
1

1575
+

1892b2
3

1575

)
(xr0s)

10

−
(

1856b1b2

1155
− 31b1b4

450
+

544b1b5

3465
− 64b2b3

385
+

28b3b4

45

+
328b3b5

55

)
(xr0s)

12 + · · ·
]

E3 = l

x
+

(
N − N + 1

γ

)
1

θψ

(
dθψ

dx

)
, E4 = l

x

F1 = 1

x

[
2(l + 1) −

{
2b0(xr0s)

3 +

(
8b1

3
+

4b3

3

)
(xr0s)

5 + 8b2
0(xr0s)

6

+

(
16b2

5
+

14b4

5
+

8b5

5

)
(xr0s)

7 +

(
96b0b1

5
+

64b0b3

15

)
(xr0s)

8

+

(
512b0b2

21
+

208b0b4

21
+

160b0b5

7
+

704b1b3

315
+

2864b2
1

315
+

2876b2
3

315

)
(xr0s)

10

+

(
31744b1b2

1575
+

112b1b4

25
+

768b1b5

175
+

544b2b3

315
+

608b3b4

75

+
2272b3b5

525

)
(xr0s)

12 + · · ·
}]

F2 = 2

xr0s

(
N − N + 1

γ

)
θN−1
ψ

dθψ

dx

[
1 +

2b0

3
(xr0s)

3 +

(
8b1

15
+

4b3

15

)
(xr0s)

5 +
14b2

0

9
(xr0s)

6

+

(
16b2

35
+

2b4

5
+

8b5

35

)
(xr0s)

7 +

(
124b0b1

45
+

32b0b3

45

)
(xr0s)

8

+

(
96b0b2

35
+

44b0b4

35
+

32b0b5

35
+

64b1b3

175
+

184b2
1

175
+

166b2
3

175

)
(xr0s)

10

+

(
9664b1b2

4725
+

52b1b4

75
+

96b1b5

175
+

1472b2b3

4725

+
188b3b4

225
+

712b3b5

1575

)
(xr0s)

12 + · · ·
]
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F3 = − (N + 1)

γ
ξ 2
uθN−1

ψ r2
0s

[
1 +

8b0

3
(xr0s)

3 +

(
8b1

5
+

4b3

5

)
(xr0s)

5 +
346b2

0

45
(xr0s)

6

+

(
128b2

105
+

16b4

15
+

64b5

105

)
(xr0s)

7 +

(
1136b0b1

105
+

388b0b3

105

)
(xr0s)

8

+

(
992b0b2

105
+

1724b0b4

315
+

1136b0b5

315
+

3032b1b3

1575
+

5672b2
1

1575
+

4058b2
3

1575

)
(xr0s)

10

+

(
314 432b1b2

51 975
+

608b1b4

225
+

32 992b1b5

17 325
+

69 856b2b3

51 975

+
188b3b4

75
+

23 776b3b5

17 325

)
(xr0s)

12 + · · ·
]

F4 = − l

x2

{[
4b0(xr0s)

3 + (4b1 + 2b3)(xr0s)
5 +

67b2
0

5
(xr0s)

6 +

(
64b2

15
+

56b4

15
+

32b5

15

)
(xr0s)

7

+

(
964b0b1

35
+

242b0b3

35

)
(xr0s)

8 +

(
10 096b0b2

315
+

1478b0b4

105
+

3287b0b5

315

+
1156b1b3

315
+

3796b2
1

315
+

3589b2
3

315

)
(xr0s)

10 +

(
133 2416b1b2

51975
+

1504b1b4

225

+
104 096b1b5

17325
+

144 832b2b3

51975

2332b3b4

225
+

32096b3b5

5775

)
(xr0s)

12 + · · ·
]

+ l

[
2b0(xr0s)

3 +

(
4b1

3
+

2b3

3

)
(xr0s)

5 +
27b2

0

5
(xr0s)

6

+

(
16b2

15
+

14b4

15
+

8b5

15

)
(xr0s)

7 +

(
292b0b1

35
+

278b0b3

105

)
(xr0s)

8

+

(
2416b0b2

315
+

146b0b4

35
+

887b0b5

315
+

452b1b3

315
+

932b2
1

315
+

713b2
3

315

)
(xr0s)

10

+

(
284 864b1b2

51 975
+

496b1b4

225
+

28 064b1b5

17 325
+

55 072b2b3

51 975

+
508b3b4

225
+

2368b3b5

1925

)
(xr0s)

12 + · · ·
]}

.

Also

ω•2 = R3r3
osσ

2

GM0
, x = r0

r0s

, ζ = r2
ψδrψ

R3xl+1
,

η = P ′
ψ

2πGρcR2xlPψ

and φ = ψ ′
g

2πGρcR2xl

where δrψ being the amplitude of Lagrangian variation in rψ , P ′
ψ the amplitude of variation

of Pψ and ψ ′
g the amplitude of variation of the gravitational potential ψg at a point on the

topologically equivalent spherical equipotential surface ψ = constant. Other symbols have
the same meaning as assigned earlier in the paper.
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